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The problem of a cylindrically or spherically imploding and reflecting shock wave in
a flow initially at rest is studied without the use of the strong-shock approximation.
Dimensional arguments are first used to show that this flow admits a general solution
where an infinitesimally weak shock from infinity strengthens as it converges towards
the origin. For a perfect-gas equation of state, this solution depends only on the
dimensionality of the flow and on the ratio of specific heats. The Guderley power-law
result can then be interpreted as the leading-order, strong-shock approximation, valid
near the origin at the implosion centre. We improve the Guderley solution by adding
two further terms in the series expansion solution for both the incoming and the
reflected shock waves. A series expansion, valid where the shock is still weak and very
far from the origin, is also constructed. With an appropriate change of variables and
using the exact shock-jump conditions, a numerical, characteristics-based solution
is obtained describing the general shock motion from almost infinity to very close
to the reflection point. Comparisons are made between the series expansions, the
characteristics solution, and the results obtained using an Euler solver. These show
that the addition of two terms to the Guderley solution significantly extends the range
of validity of the strong-shock series expansion.

1. Introduction
The problem of an imploding shock wave is interesting from a fundamental

gasdynamical point of view, and has important applications ranging from detonation
and fusion initiation to the destruction of kidney stones. Guderley first investigated
the problem by considering a cylindrical or spherical shock wave, initially at a very
large radius, propagating inward through a perfect gas at rest and then reflecting
from the axis or centre, see Guderley (1942).

Guderley considered only the case where the shock is already so intense that the
strong form of the shock jump relations apply. For this case, he found a similarity
solution, in which the shock radius is given by the time relative to the time at which it
reaches the centre raised to some power smaller than unity, so that the shock strength
becomes infinite at the centre. The value of this power is the same for the incoming
and reflected shock waves. Since Guderley’s work, this value has been recalculated
with greater accuracy by several researchers. Hafner (1988) derived the equations in
Lagrangian coordinates and used power series to solve these. By doing so, he was
able to find the exponent value with a very high number of significant digits.

The problem was also studied by Chester (1954), Chisnell (1955), and Whitham
(1958) with approximate methods, specifically geometrical shock dynamics. In their
solutions, the exponent in the expression for the Mach number as a function of
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shock radius for the spherical case is exactly twice that for the cylindrical case. This
approximate result differs from the exact solution by less than one percent. The
geometrical shock dynamics method is both simple and intuitive while providing
fairly accurate results.

More recently, Chisnell (1998) described the imploding shock problem analytically,
along with the flow generated behind it, by making a few analytical assumptions. The
exponent values that he found, using approximate equations, are fairly close to their
exact values, which indicates that his descriptions are valid. Chisnell also investigated
the converging shock behaviour when the specific heat ratio, γ , tends to 1 or to
infinity. Finally, Lee (1967) used a quasi-similar approximation and was able to find
the approximate flow behaviour even for finite Mach numbers. His solution agrees
very well with the exact similarity solution.

Guderley suggested that the power-law solution should be extended as a power
series. This would then permit relaxation of the strong-shock assumption, allowing
solutions for an increased range of acceptable Mach numbers, valid farther from the
point of reflection.

The aim of the present work is to identify a generalized imploding-shock problem
using the full Rankine–Hugoniot shock-jump relations, and to obtain a power series
solution both for the converging and reflected shocks in which the Guderley solution
is the first term in the inner, strong-shock expansion. Such a solution would apply
in and near the strong-shock limit. Also, we seek a series solution for the outer flow
described by an initially infinitesimally weak shock at infinite radius as it propagates
inward. Furthermore, we also aim to compute the full flow field for the generalized
imploding shock using the method of characteristics. Finally, we want to compare
the results with numerical simulations.

In the following sections we first carefully define the generalized imploding–
reflecting shock flow. The problem will then be posed, dimensional analysis will
be used to guide the solution strategy, and finally, the general equations will be given
(§ 2). Then the Guderley solution will be interpreted and two additional terms will be
added. A series expansion will also be formed for a very weak shock located very far
from the reflection point (§ 3). An algorithm based on the method of characteristics,
and designed to find the complete imploding shock solution from infinity to the origin,
will be described (§ 4). Finally, some comparisons between expansions, characteristic
solutions, and results from an Euler solver will be presented (§ 5). Note that the series
expansion calculations involve very lengthy expressions. For this reason, only the
method to solve the problem, and not the expressions themselves will be presented in
this article. Further details are provided in Ponchaut (2005).

2. Problem definition
2.1. General notation

Consider the one-dimensional problem of a shock propagating, from infinity, through
a stationary inviscid perfect gas, and reflecting at the origin. This shock can have
either cylindrical (ν = 2) or spherical symmetry (ν = 3). The problem, as defined by
Guderley (1942), has no characteristic length; the shock comes from infinity and
reflects back to infinity. For the purposes of this paper, real gas effects and shock
instabilities are not considered.

The independent variables in this problem are the radius, r , and the time, t . The
shock position is given by Rs(t) and its velocity is Us(t). The origin of the independent
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First characteristic family (particle trajectory): dr/dt = u
Second characteristic family: dr/dt = u + c

Third characteristic family: dr/dt = u – c

Last characteristic reaching the incoming shock

Figure 1. Sketch of the r–t diagram of the problem. The shock position is represented by the
thick curves. The three different characteristic families are also shown. u and c are the local
velocity and speed of sound of the flow, respectively.

variables is such that the shock reflects at r = 0 when t = 0, i.e.

Rs(0) = 0. (2.1)

In this configuration, the incoming part of the shock is characterized by t < 0 and the
reflected part, by t > 0. The medium is a perfect gas with a ratio of specific heats γ ,
and the flow upstream of the incoming shock is at rest with pressure PI and density
ρI. Note that the notation in this work, which is suitable for the series analysis, is
slightly different from that chosen by Guderley.

The entire problem can be divided into four separate regions in the (r, t)-plane.
Region I is the undisturbed flow (t < 0 and r <Rs(t)). In this region, the density
and the pressure are constant and the flow is at rest. Region II corresponds to the
flow behind the incoming shock (t < 0 and r > Rs(t)). Region III corresponds to the
flow upstream of the reflected shock (t > 0 and r >Rs(t)). And, finally, region IV
corresponds to the flow downstream of the reflected shock (t > 0 and r <Rs(t)). In
the current notation, fI refers to the value of f in region I, fII to the value of f in
region II, etc.

Figure 1 shows these four regions, as well as representative shapes of the different
families of characteristics. First, a particle trajectory is shown as the thin solid curves.
In region I, the flow is at rest and therefore the particle trajectories are just lines
of constant r . After the incoming shock, the gas flows towards the centre but slows
down in time due to the accumulation of mass. After the reflected shock, the flow is
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directed away from the centre and slows down to eventually come to rest when the
pressure becomes constant in the whole domain. The second family of characteristics
is defined by dr/dt = u + c and is represented by dotted curves. In region I, these are
straight lines representing waves moving at the speed of sound. After the incoming
shock, they are deflected toward the centre and they stop at the shock. In fact, the
second family of characteristics in region IV represents waves that travel faster than
the shock and stop when they reach it. Finally, the third family of characteristics
is defined by dr/dt = u − c and is represented by dashed curves. In region I, these
characteristics are also straight lines that describe waves moving at the speed of
sound. They stop at the incoming shock since, in region II, they travel faster than
the shock. The third family of characteristics in region II or III reaching the reflected
shock are just deflected by the reflected shock. Note that the particular characteristic
that reaches the shock at t = 0 is of special importance since it is the boundary of the
domain that influences the incoming shock. This characteristic leads to singularities
in the equations as explained in later sections.

Region I is already known and regions II, III and IV satisfy the Euler equations.
Shock jump conditions must be satisfied along the boundaries between regions I and II
and between regions III and IV. The variables must be continuous between regions II
and III and finally, from physical arguments, the flow must have no velocity at the
origin. It is important to note that the shock Mach number tends to infinity at the
origin in the incoming case, but is finite in the reflected case. The reason for this is
that, although the shock velocity is infinite at the origin, the speed of sound at the
origin, in region III, is infinite as well.

2.2. Dimensional analysis

According to Buckingham’s pi theorem, since we have seven variables, we can form
four independent non-dimensional numbers. We will take these four non-dimensional
parameters to be

ν, γ, θ =
cIt

Rs

, η =
Rs

r
,

where cI is the speed of sound in the undisturbed region (cI =
√

γPI/ρI). These four
non-dimensional variables are sufficient to describe the complete solution to the
problem. This means that in (θ , η) coordinates, there exists a universal solution for a
given γ and a given ν. The density, pressure, and velocity can be expressed as

ρ = ρIρ(ν, γ, θ, η), (2.2)

P = PIP (ν, γ, θ, η), (2.3)

u = cIu(ν, γ, θ, η). (2.4)

The shock motion can also be investigated by considering the velocity of the shock,
Us = dRs/dt . Since the shock is located at η = 1, we have

Us = cIK
(−1)(ν, γ, θ), (2.5)

where K (−1) is the inverse function of K with respect to Us/cI. K is an unknown
function defined as

θ = K

(
ν, γ,

Us

cI

)
. (2.6)
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This equation is useful since it is valid for all shock motions, regardless of
the particular scaling of the problem. However, it is not convenient when direct
predictions of the shock position are desired. In fact, (2.6) involves three variables (t ,
Rs(t) and Us(t)), and is a nonlinear differential equation for Rs(t). This can be seen if
we write (2.6) as

cIt

Rs(t)
= K

(
ν, γ,

1

cI

dRs(t)

dt

)
. (2.7)

To find more suitable equations, we can drop one of the variables (t or Us) and
define a characteristic time, τ , such that cIτ is the radius at which the incoming shock
has a Mach number of 2 (arbitrary choice). In this case, we can show that we get the
following expressions:

Rs

cIτ
= F

(
ν, γ,

Us

cI

)
, (2.8)

Rs

cIτ
= G

(
ν, γ,

t

τ

)
, (2.9)

where

F (ν, γ, −2) = 1, (2.10)

G(ν, γ, 0) = 0. (2.11)

The series expansions will be written in the same form as (2.9). The functions F ,
G and K will be used to make comparisons between the solutions from the series
expansions, the method of characteristics and Euler computations (§ 5.3).

3. Series expansion solutions
To obtain a simple solution, it is useful to find the limiting behaviours of the shock

in the form of a series. Guderley obtained the first term of the expansion series solution
close to the origin, for r � cIτ (or equivalently, for Ms � 1). In the next subsections,
we will first transform the equations to make them more suitable for solving the
series expansion problems (§ 3.1). Guderley’s solution will then be examined (§ 3.2)
and extended with two additional terms (§ 3.3). Finally, series expansions will also
be formed for the weak shock case, i.e. for r � cIτ , or for Ms − 1 � 1 (§ 3.4). These
can be very useful as starting conditions when using a numerical method to find the
solution in the entire domain.

3.1. Initial change of variables

Looking at figure 1, we see that the four regions have complicated shapes that are
not known a priori. It is much easier to transform these regions into ones with fixed
shapes to find out exactly where the shock jump conditions have to be applied. This
can be done by making the change of variables

(t, r) → (η, r),

where

η =
Rs(t)

r
. (3.1)

The shock jump conditions now occur at η =1 and under this change of variables,
figure 1 is transformed into figure 2.
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Figure 2. Sketch of the η–r diagram for the problem. The shock position is represented by
the thick lines. The three different kinds of characteristics are shown as well. The crosses
correspond to the same point in the (r , t) domain. Note the shape of the last characteristic
reaching the incoming shock: in the η–r diagram, this particular characteristic reaches r = 0 at
a finite η < 1. As will be shown in the next sections, the flow close to the origin is self-similar
and the trajectory of this characteristic corresponds to a constant η that is different from unity.
This particular characteristic leads to a singularity in the domain.

3.2. Guderley’s solution

Guderley’s work focused on the region close to r = 0 (r � cIτ ). There, it can be
assumed that between regions I and II, the strong-shock jump conditions are valid.
Note that this assumption cannot be made for the reflected shock between III and IV.
Although the reflected shock velocity tends to infinity when r tends to 0, its Mach
number is finite since the speed of sound tends to infinity as well. Furthermore,
Guderley hypothesized that under the strong-shock assumption, the shock position
can be written as proportional to time raised to the power n±. Using the notation
introduced in (2.9), this means that

Rs(t) = cIτβ
±
(

|t |
τ

)n±

, (3.2)

where the superscript ± refers to a constant that has different values in the incoming
and in the reflected cases, with − and + denoting the value in the incoming and in
the reflected cases, respectively. To simplify the expressions in later sections, it is more
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convenient to write (3.2) as

Rs(t) = cIτ s

(
t

α±τ s

)n±

, (3.3)

where α± is a constant that is chosen to be −1 for the incoming shock, and that has
an unknown constant positive value α+ for the reflected shock, and where

τ s = (β−)
1

1−n− τ. (3.4)

The exponent n± is an unknown constant and, based on the work so far, its value
is not necessarily the same in the incoming and in the reflected cases. Its value lies
between 0 and 1 since Rs(0) = 0 and the speed of the shock tends to infinity as t

tends to 0. From (3.3), we can find the shock velocity, which is given by

Us(Rs) = cI

n±

α±

(
t(Rs)

α±τ s

)n±−1

= cI

n±

α±

(
Rs

cIτ s

) n±−1

n±

. (3.5)

Since the shock position will only be accurate for Rs � cIτ s, the solution that we
obtain will only be valid for small r . In addition, since the characteristics coming
from the shock are only correct for small t (or small Rs), the solution is also only
correct for t � τ s.

The method to solve this simplified problem will be discussed in the following
subsections. New shock jump conditions will first be written and new variables will
be introduced (§ 3.2.1). From the resulting equations, the problem will be solved for
n± and then for α± (§ 3.2.2).

3.2.1. Self-similar problem

We first write the strong-shock jump conditions for the incoming case, which are

ρII(1, r) = ρI

γ + 1

γ − 1
, (3.6)

PII(1, r) = PI

2γ

γ + 1

(
Us(Rs)η=1

cI

)2

= PI

2γ
(
n±)2

γ + 1

(
r

cIτ s

) 2(n±−1)

n±

, (3.7)

uII(1, r) =
2

γ + 1
Us(Rs)η=1 = −cI

2n±

γ + 1

(
r

cIτ s

) n±−1

n±

, (3.8)

where we used the fact that (Rs)η=1 = r and that for the incoming case α− = −1.
These equations suggest that we try a solution of the form

ρ(η, r) = ρIρ1(η), (3.9)

P (η, r) = PIP1(η)

(
n±

α±

)2 (
r

cIτ s

) 2(n±−1)

n±

, (3.10)

u(η, r) = cIu1(η)
n±

α±

(
r

cIτ s

) n±−1

n±

, (3.11)

where ρ1(η), P1(η), and u1(η) are unknown functions of η only. The subscripts 1, 2,
and 3 denote the first, second, and third terms in the series expansions. Since, when this
solution form is substituted into the Euler equations, there is no longer a dependence
on r , the assumed form of the variables is acceptable and the problem becomes
self-similar.
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Once again, we have not made any assumptions about the value of the exponent
n±. Using the change of variables defined earlier, the continuity conditions between
regions II and III can be written as

ρ1,III(0) = ρ1,II(0), (3.12)

P1,III(0)

(
n+

α+

)2 (
r

cIτ s

) 2(n+−1)

n+

= P1,II(0)
(
n−)2

(
r

cIτ s

) 2(n−−1)
n−

, (3.13)

u1,III(0)
n+

α+

(
r

cIτ s

) n+−1
n+

= −u1,II(0) n−
(

r

cIτ s

) n−−1
n−

. (3.14)

These conditions must be satisfied for all r . This is only possible if we impose the
condition that n± = n+ = n− = n. Finally, as noted before, the full Rankine–Hugoniot
shock jump conditions are used between regions III and IV since the reflected shock
Mach number is finite.

Using the definitions introduced in this subsection, the resulting equations form a
non-linear system of differential equations that can be further simplified by applying
a final change of variables:

φ1(η) = η1/nu1(η), (3.15)

π1(η) =
η2/nP1(η)

γρ1(η) [1 − φ1(η)]
, (3.16)

which leads to a system of differential equations of the form

dφ1(η)

d log η
= f1(φ1(η), π1(η)), (3.17)

dπ1(η)

d log η
= g1(φ1(η), π1(η)), (3.18)

dρ1(η)

d log η
= h1(φ1(η), π1(η)). (3.19)

It is easier to treat φ1 as the independent variable rather than η. We then obtain the
following two differential equations:

dπ1(φ1)

dφ1

=
g1(φ1, π1(φ1))

f1(φ1, π1(φ1))
, (3.20)

d log η(φ1)

dφ1

=
1

f1(φ1, π1(φ1))
. (3.21)

Along with these equations, a first integral can be found:

ρ1(φ1) = C

[
π1(φ1)

n

η(φ1)
2

(1 − φ1)
2(1−n)+nν

ν

] ν
nν(γ −1)−2(1−n)

, (3.22)

where C is a constant that takes a different value in each region. The problem is
now relatively easy to solve since (3.20) can first be considered alone to solve for
π1(φ1). Then, (3.21) can be integrated to find η(φ1). ρ1(φ1) is obtained using the first
integral (3.22).

3.2.2. Discussion and solution

First, consider the limiting values of the problem. In region II, just downstream
of the shock, φ1,II and π1,II are given exactly by the shock jump conditions. At the
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Figure 3. Zero and pole locations of the right-hand side of the π′
1(φ1) equation (3.20), for

ν = 3, γ = 5/3, and n= 0.68838. The circles are the particular points that are intersections of
the zero and the pole curves. The solution is represented by the solid curve and the crosses
show the boundaries of the regions.

junction between II and III, ρ1, P1, and u1 are continuous and finite, meaning that,
since η tends to 0, φ1 and π1 also tend to 0 at the junction (see (3.15) and (3.16)).
Finally in region IV, when η tends to infinity, P1,IV must be finite, meaning that
π1,IV(1 − φ1,IV) must also tend to infinity. In addition, φ1 cannot change sign within a
region, and π1(1 − φ1) must always remain positive. For any given case, ν and γ are
fixed. For each value of n, we can plot, in the (φ1, π1)-plane, the zeros and poles of
the right-hand side of (3.20) and (3.21). Figure 3 shows these for π′

1(φ1) (3.20).
In region II, the solution trajectory in the (φ1, π1) domain must go from the initial

point to (0, 0). Along this trajectory, the variables must be continuous. This is only
possible if the trajectory crosses a pole while simultaneously crossing a zero and
vice-versa. In fact, it can be shown that if this is not the case, the solution will not
be smooth within the region. It is conceptually easy to find n since it corresponds
to the value at which the trajectory crosses one of the circled points in figure 3. It
is important to note that the singular point corresponds to a point on the limiting
characteristic, which is the characteristic that reaches r = 0 at t = 0 and is represented
in the characteristic sketches by a dash-dot-dot curve.

Consider now the trajectory in region IV. By examining (3.20), we see that the only
way φ1,IV(η) /η1/n can tend to infinity while keeping π1,IV(η) [1 − φ1,IV(η)]/η2/n finite,
is for the trajectory to become tangent to the pole curve around its singularity. This
condition leads to a specific value of α+ (α− being −1). As an example, figure 3
represents the solution trajectory for ν = 3 and γ = 5/3, in the (φ1, π1)-plane, along
with the corresponding pole and zero curves of the π′

1(φ1), equation (3.20). Note that
in this case, π′

1(φ1) becomes infinite and changes sign within region III.
Finally, as discussed in § 2.2, τ is a characteristic time. The ratio τ s/τ and the

constant β±, in (3.4), cannot be evaluated using this expansion series method. The
entire problem has to be computed using a different method and the constants
are determined so that the shock trajectory fits the expansion. This process will be
explained in more detail in § 4.
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3.3. Strong-shock series expansion

Guderley’s solution described in § 3.2 is only valid for very strong shocks (M2 � 1 or
Rs � cIτ ). It is therefore useful to extend the solution in the form of a series expansion
so that the approximate solution remains valid over a wider range of Mach numbers
as was suggested by Guderley (1942). The way to do this is to extend (3.3) and to
assume a shock position equation of the form

Rs(t) = cIτ s

(
t

α±τ s

)n[
1 + a

±
2

(
t

α±τ s

)i2

+ a
±
3

(
t

α±τ s

)i3

+ HOT

]
, (3.23)

where ik < ik+1 and where HOT represents all the higher-order terms. Essentially, each
additional term partially corrects for the fact that, for finite Mach numbers, the strong
shock solution is not exact. Although it involves lengthy calculations, the method to
find the values of ik is straightforward. First, the shock location is expanded in terms
of a power series in t . The shock jump conditions between regions I and II, and the
variables ρ, P , and u are expanded in a series as well. A new system of differential
equations is written for each term. These systems of equations are singular at exactly
the same points as those found in the Guderley strong-shock solution. Each system
must possess a coefficient a

±
k with a value such that the singularity is avoided. If the

exponents ik are not correct, some systems of equations will not have a coefficient
available to avoid infinite derivatives at the corresponding singular point. Performing
all the calculations, it can be shown that ik = 2(k − 1)(1 − n).

Substituting the appropriate exponents into (3.23) produces a shock motion given
by

Rs(t) = cIτ s

(
t

α±τ s

)n[
1 + a

±
2

(
t

α±τ s

)2(1−n)

+ a
±
3

(
t

α±τ s

)4(1−n)

+ HOT

]
. (3.24)

Using standard series inversion techniques, we obtain

t(Rs) = α±τ s

(
Rs

cIτ s

)1/n[
1 − a

±
2

n

(
Rs

cIτ s

) 2(1−n)
n

+
(a±

2 )2(5 − 3n) − 2na
±
3

2n2

(
Rs

cIτ s

) 4(1−n)
n

+ HOT

]
. (3.25)

Using the same technique as used by Guderley, a series expansion can be written
for the full Rankine–Hugoniot shock jump conditions between regions I and II and
between regions III and IV, as well as for the continuity conditions between regions II
and III. These series are in terms of r/(cIτ s) and lead us to try series solutions of the
form

ρ(η, r) = ρIρ1(η)

[
1 + ρ2(η)

(
r

cIτ s

) 2(1−n)
n

+ ρ3(η)

(
r

cIτ s

) 4(1−n)
n

+ HOT

]
, (3.26)

P (η, r) = PIP1(η)

(
n

α±

)2(
r

cIτ s

) 2(n−1)
n

×
[
1 + P2(η)

(
r

cIτ s

) 2(1−n)
n

+ P3(η)

(
r

cIτ s

) 4(1−n)
n

+ HOT

]
, (3.27)
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u(η, r) = cIu1(η)
n

α±

(
r

cIτ s

) n−1
n

×
[
1 + u2(η)

(
r

cIτ s

) 2(1−n)
n

+ u3(η)

(
r

cIτ s

) 4(1−n)
n

+ HOT

]
. (3.28)

When these series are introduced into the Euler equations, the new expressions lead
to a new series of equations. The way to solve this new problem is to add one term at
a time into the series. Assuming that the first (k − 1) terms are solved, an additional
term can be added to all the series (introducing a new coefficient a

±
k in the process).

This leads to a series of systems of Euler equations. Given that the first (k−1) systems
in the series have already been solved, only the kth system needs to be considered.
Performing appropriate changes of variables, the following system can be written:

d

dφ1

⎛
⎝φk(φ1)

πk(φ1)
ψk(φ1)

⎞
⎠ = Mk

⎛
⎝φk(φ1)

πk(φ1)
ψk(φ1)

⎞
⎠ + a

±
k bk + ck, (3.29)

where Mk is a matrix, and where bk and ck are vectors. These are singular at the
limiting characteristic in region II and at r = 0 in region IV. To solve the system, a−

k

and a+
k are chosen to remove the singular behaviour in region II and in region IV,

respectively.
Knowing the values of the coefficient a

±
k , the function G defined in § 2.2 can be

obtained:

Rs

cIτ
= G

(
ν, γ,

t

τ

)

=
τ s

τ

(
1

α±(τ s/τ )

t

τ

)n[
1 + a

±
2

(
1

α±(τ s/τ )

t

τ

)2(1−n)

+ a
±
3

(
1

α±(τ s/τ )

t

τ

)4(1−n)

+ HOT

]
.

(3.30)

The non-dimensional functions F and K can be written in a similar form. Note that
in (3.30), the ratio τ s/τ is constant for a given symmetry and a given γ , and cannot
be obtained using series expansions. This ratio can only be obtained by solving the
full problem (see § 4).

Note that, based on the results obtained, the series presented in this section seem
to be at least asymptotic. Their convergence was not studied however. More details
about the equations involved in the calculations can be found in Ponchaut (2005).

3.4. Weak-shock series expansion

In Guderley’s problem, the shock is supposed to come from infinity, to travel up to
r = 0, and then to bounce back to infinity. It is therefore also interesting to look for
an expansion solution when the shock is still weak and far from the origin. This can
only be done in the incoming shock case. In fact, in the reflected shock case, the full
history of the flow is required and no analytic behaviour can easily be obtained. If we
construct a series expansion similar to what was done in § § 3.2 and 3.3, but expand
the solution around (r , t) tending to (∞, −∞) rather than (0, 0), we get

Rs

cIτ
=

τw

τ

[
− τ

τw

t

τ
+

√
− τ

τw

t

τ
− 19 + 3γ

16(γ + 1)
log

(
− τ

τw

t

τ

)
+ t0 + HOT

]
, (3.31)
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in the cylindrical case, and

Rs

cIτ
=

τw

τ

⎡
⎢⎢⎣− τ

τw

t

τ
+ log

(
− τ

τw

t

τ

)
+ t0 +

log

(
− τ

τw

t

τ

)

− τ

τw

t

τ

+

t0 +
γ + 5

γ + 1

− τ

τw

t

τ

+ HOT

⎤
⎥⎥⎦ (3.32)

in the spherical case.
In the weak-shock expansion, both the ratio τw/τ and the constant t0 are unknown

and cannot be found using series expansion. Note that t0 acts like a time shift that
allows the shock to reach the origin at t = 0.

4. Incoming shock complete solution
In the previous section, we investigated the limiting behaviours of the problem

and we obtained solutions that included unknown values. These particular values
are τ s/τ in the strong-shock expansion, τw/τ and t0 in the weak-shock expansion.
These can only be determined with a complete calculation of the incoming shock
problem. For that purpose, as well as to obtain the complete incoming shock solution,
a first-order-accurate program based on the method of characteristics was written.

Since the program has to be able to compute the flow starting at Rs � cIτ and ending
at Rs � cIτ , computing the solution in real space (r , t) would be very inconvenient.
To avoid that, the following change of variables is performed:

θ =
cIt

Rs(t)
, η =

Rs(t)

r
.

With this change of variables, the infinite domain becomes a square-bounded domain
with θ ranging from −1 to 0 and η ranging from 0 to 1 (see figure 4). The reason
for introducing θ follows logically from (2.6). In fact, in solving the problem, we will
naturally find the unknown function θ = K(ν, γ, Us/cI).

In § 3.2.1, we saw that close to the origin, the shock jump conditions give a finite
density behind the shock, but the pressure, the velocity and the shock speed tend to
infinity. For a shock very close to the origin, we have that

PII(1, θ) ∝ R
2(n−1)

n
s ∝ 1

θ2
, (4.1)

uII(1, θ) ∝ R
n−1
n

s ∝ 1

θ
, (4.2)

Us(θ) ∝ R
n−1
n

s ∝ 1

θ
. (4.3)

To avoid any singular values in the computational domain, the following new variables
are used:

P (η, θ) = θ2 PII(η, θ)

PI

, u(η, θ) = θ
uII(η, θ)

cI

,

c(η, θ) =
θ

cI

√
γPII(η, θ)

ρII(η, θ)
, U s(θ) = θ

Us(θ)

cI

.

Using this last change of variables, the characteristics equations can be written and
the problem can be solved for P (η, θ), u(η, θ), c(η, θ), and U s(θ).
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1η*

–1
η = Rs(t)/r

θ
 =
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I t

/R
s(

t)

Shock position
First characteristic family (particle trajectory): dr/dt = u

Second characteristic family: dr/dt = u + c

Third characteristic family: dr/dt = u – c

Last characteristic reaching the incoming shock

Figure 4. Sketch of the η–θ diagram for the problem in region II. The shock position is
represented by the thick line. Its motion starts at θ = −1 and ends at θ = 0. The three different
kinds of characteristics are also shown. η∗ is the value of η at which there is a singularity
in the strong-shock series expansion. Very close to the origin the flow is self-similar and the
non-dimensional trajectory of the singular characteristic η∗ = Rs/r∗ approaches a finite value
that is different from unity, when t → 0.

As seen in figure 4, all the third-family characteristics influencing the incoming
shock start at (θ , η) = (−1, 1). This means that the whole problem is defined at that
singular point. Since it is impossible to start there, the program needs to start at
θ + 1 � 1 and the weak-shock series expansion can be used as the starting flow. Note
that at finite but small θ + 1, the third-family characteristics that influence the shock
do not merge to a point; they do however remain within a very narrow range of
η. Since all the characteristics going to the shock start from this narrow range, we
have to be able to add characteristics inside the domain. If, during the computation,
the spacing of two successive characteristics of the same family becomes excessive, a
new characteristic is initiated between them. This is done by creating a node that is
interpolated along a characteristic of the other family. To maintain accuracy during
this process, the interpolation has to be of an order that is at least as high as the
order of the characteristic computations.

As previously mentioned, to start the computation, the weak-shock solution is used
with a value of θ that is close to −1. In (η, θ) coordinates, t0 is the only unknown
constant appearing in the starting conditions. If t0 had the correct value, the problem
could theoretically be integrated up to the reflection point and θ would tend to 0 at
the same time as cI/Us. If the guessed value of t0 is too low, the integration leads to
a shock radius that tends to 0 before time reaches 0. This means that θ will tend to
infinity. On the other hand, if the value of t0 is too high, the time tends to 0 before
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the shock radius and θ tends to 0 for a finite value of cI/Us. A bisection method is
used to obtain the correct value of t0.

To find the ratios τw/τ and τ s/τ , the following equation is integrated starting at a
Mach number close to 1:

1

cI

dRs

dt
=

Us(θ)

cI

=
U s(θ)

θ
=

U s(cIt/Rs)

cIt/Rs

. (4.4)

The initial conditions (Rs, t) can be random and the value of τw is arbitrarily chosen,
since the unknown ratios are independent of these values. Once integrated, (4.4) gives
Rs(t) /cI. From there, it is easy to find the functions F and G used in (2.8) and (2.9),
respectively. Finally, τ can be obtained by using τ = R�

s /cI, where R�
s is the radius

at which the incoming shock has a Mach number of 2. Fitting the strong-shock
expansion result with the integrated solution, we finally get τ s. The ratios τw/τ and
τ s/τ can then be evaluated.

It is important to note that t0 and the two ratios were not found with a high degree
of accuracy since the integration performed was only first order and that, for example,
the constant in the initial conditions does not appear in any dominant terms. Even
though the accuracy is not high, the bisection method has to find the appropriate
t0 value with a high number of significant digits so that the characteristics can be
computed up to a value of θ that is close to 0. In other words, we must find very
accurately a value of t0 that is consistent with our integration scheme, even though
the value of t0 itself was not very accurate.

5. Results
In this section, the series expansion calculations will be compared to the

characteristics results. In addition, some comparisons will include computational fluid
dynamic calculations of the Euler equations made in the AMRITA environment, see
Quirk (1998).

The strong-shock series expansion coefficients were calculated using 2000 points in
region II, 2000 points in region III, and 1000 points in region IV. We will compare
some aspects of the results obtained by each method in the following sections. First,
the characteristics will be shown in the (η, θ)-plane (§ 5.1). The density, the pressure,
and the velocity distributions will be compared for Euler calculations and the series
expansions (§ 5.2). Finally, the non-dimensional functions F , G, and K that were
defined in § 2.2 will be compared between the methods (§ 5.3). In addition, some
values of the constants in the expansion series are presented in table 1, along with an
estimate of the number of significant digits.

5.1. Characteristic results

Figure 5 shows one set of the characteristic results and illustrates the basic shapes of
the second and third characteristic family. This calculation has cylindrical symmetry
and a specific heat ratio, γ , of 1.4. The calculations were started at θ = −0.995 and
were stopped at θ = −0.0338, which corresponds to shock Mach numbers ranging
from 1.00257 to 24.6 or to a shock radius ratio between the final and the initial points
of about 2 × 10−12. In the figure, characteristics of the second family are represented
with dotted curves and characteristics of the third family are represented with dashed
curves. The characteristic that separates the portion of the flow in region II that
influences the shock from the rest of the region is clearly distinguishable. The limit of
this particular characteristic for θ tending to 0 is given in the strong-shock expansion
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τ s
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τw
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Cylindrical symmetry

1.2 0.86116302390 6.099957294 −0.56495331 21.4953 5.5264 −106.97 0.8797191058 0.7212 195.6 30.66
1.4 0.835323191953 2.8156109349 0.2335140 8.92588 1.0608 −52.646 0.85129137696 0.6470 49.26 23.39
5/3 0.8156229691667 1.6947147269 0.5004547 4.391459 −0.1756 −22.670 0.830529251753 0.5678 26.34 17.87

Spherical symmetry

1.2 0.75714181478 6.431231558 −0.6267725 50.4650 9.13 −613.7 0.91041281789 −0.7612 20.93 3.119
1.4 0.717174501488 2.688492680 0.275784 16.614985 2.59 −200.2 0.88628918681 −0.7052 9.933 2.727
5/3 0.6883740859496 1.5478188813 0.621289 7.06248 4.774 −16.5 0.867641792579 −0.6426 7.042 2.387

Table 1. Values of the different constants. The numbers are displayed with an estimated number of significant digits. These estimates were
obtained by computing each value with varying integration step sizes.
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Figure 5. Second and third characteristic families in the cylindrical shock case for γ = 1.4.
Dotted and dashed curves represent characteristics of the second and the third families,
respectively. The cross represents the limit of the last characteristic reaching the incoming
shock. This limit corresponds to the value of η at the singular point in region II in the
strong-shock series expansion.

calculation since it corresponds to the value of η at the singularity (η∗). This limit is
represented by a cross in the figure. Due to the singular behaviour of the characteristics
close to η = 0 and to θ = 0, the characteristics could not be computed in the entire
domain and were therefore cropped.

5.2. ρ, P , and u distribution

Comparisons of the flow properties were made between the strong-shock series
expansion and Euler calculations. The variables ρ, P , u, and t are normalized by
ρI, ρI|Us(r)

− |2, |Us(r)
− |, and |ts(r)− |, respectively. In these expressions, Us(r)

− is the
speed of the incoming shock when it crosses the radius r , and ts(r)

− is the time at
which that occurs.

Comparisons are made in the spherical case, for γ = 1.4. The shock was initiated
with a Mach number of 5 and the variables were taken at a radius 10 times smaller
than the initial radius where the Mach number was 12.4.

Figure 6 shows the variation over time of the normalized density, pressure and
velocity. Guderley’s solution is accurate for very high Mach numbers, but at the
current Mach numbers, it shows some discrepancies with the Euler results. Most
of these discrepancies appear in the density and the pressure distributions. The
discrepancies are greatly reduced when two terms are added to the expansion. As
explained previously, the shock series expansions are accurate for a low shock radius
(Rs � cIτ ). But this also means that the flow properties at a given small radius will
only be valid for small times (t � τ ).

5.3. The non-dimensional functions F , G, and K

The functions F , G, and K were introduced in § 2.2. Given the symmetry of the
problem, ν, and specific heat ratio, γ , these functions are fully defined. They are
particularly useful since they describe all possible shock trajectories. The weak and
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Figure 6. Normalized density, pressure, and velocity distributions versus normalized time
for a spherical imploding shock (γ =1.4). The calculations were started with a shock Mach
number of 5 and the measurements were taken at a radius 10 times smaller than the initial
radius (where the incoming shock Mach number is 12.4). Note that, although it is sometimes
indistinguishable from the Euler computations, the 3-term expansion was plotted in each graph
in all the four regions.

strong series expansions of these functions will be compared to the characteristics
results and to the Euler solutions. The results will be presented for the axisymmetric
case (ν = 2), with a γ of 5/3. The functions F , G and K are represented in figures 7, 8,
and 9, respectively. Note that in the reflected shock case, there is no weak-shock series
expansion. Also, the characteristics program is only used to compute the incoming
shock solution. In all of the figures, the weak-shock series expansion shows very good
agreement with the characteristics computation for large radii (or for Mach numbers
close to 1). The Guderley solution is excellent for very strong shocks. The addition
of two terms to the Guderley solution clearly improves the results since it remains
accurate over a wider range of radii.

Discrepancies can be seen in the Euler computations for large |t |. This is due
to simplified initial conditions and the use of a non-infinite domain. In addition,
discrepancies in the Euler solution exist in the region close to the origin because
the gradients become very high and numerical error becomes important. Note that
even though the initial conditions of the Euler simulation were not perfectly chosen
to avoid the introduction of a length scale, the computation quickly converges to
the series solution. This suggests that, like the one-term Guderley solution, the series
solution is an attractor.
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Figure 7. Function Rs/(cIτ ) = F (ν, γ, Us/cI) in the axisymmetric case for γ = 5/3.

Weak expansion
Guderley
3-term expansion
Euler solver
Characteristics

105

104

103

102

101

100

10–1

10–2

10–3

10–4

10–5
–106 –103 –100

t/τ t/τ
–10–3 –10–6 10–6 10–3 100 103 106

R
s/

c I
 τ

 =
 G

(v
, γ

, t
/τ

)

Figure 8. Function Rs/(cIτ ) = G(ν, γ, t/τ ) in the axisymmetric case for γ = 5/3.

6. Conclusions and future work
In this work, the imploding–reflecting shock problem was investigated with

cylindrical and spherical symmetry. The incident shock originated from infinity,
travelled through an initially uniform perfect gas at rest, was reflected at the origin,
and travelled back to infinity. Guderley’s strong-shock solution was expanded using
a three-term power series to represent the behaviour of the shock close to the
reflection point. Another series expansion was constructed to represent the behaviour
of the incoming shock while it is very far from the origin. Finally, the method of
characteristics was used to solve the incoming shock problem throughout the entire
domain. In order to handle the very large range of radii, an appropriate change of
variables had to be made.
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Figure 9. Function θ = K(ν, γ, Us/cI) in the axisymmetric case for γ = 5/3.

Several comparisons between the power series, the method of characteristics, and
Euler computation solutions were presented. The results show that the weak-shock
expansion series is very accurate for large radii. Also, the two additional terms in the
strong-shock series expansion more accurately represent the actual solution around
the origin.

The next step to complete this work would be to use the characteristics method
to compute the reflected shock motion. This problem is more complicated since both
regions around the shock have to be calculated (regions III and IV). In addition, the
initial conditions are not based on the strong-shock series expansion since this series
is only valid for small r . If the same type of change of variables as the one used
in the incoming characteristics program is used for the reflecting part, the following
procedure could be used to obtain an initial condition. First, the incoming shock
case should be evaluated up to just before the reflection time. Then, the solution
at that time has to be transformed back into r–t variables and usual characteristics
have to be used to find the evolution of the flow in region II, to cross the boundary
between regions II and III, and to continue the calculation up to a small finite positive
time. Then, the results should be transformed back into the coordinates used in the
characteristics program to form the initial conditions in region III where the radius
is sufficiently large that the strong-shock series expansion is no longer accurate.

N.P. and D.P. were partially supported by the Academic Strategic Alliances Program
of the Accelerated Strategic Computing Initiative (ASCI/ASAP) under subcontract
no. B341492 of DOE contract W-7405-ENG-48.

REFERENCES

Chester, W. 1954 The quasi-cylindrical shock tube. Phil. Mag. 45, 1293–1301.

Chisnell, R. F. 1955 The normal motion of a shock wave through a nonuniform one-dimensional
medium. Proc. R. Soc. Lond. 232, 350–370.

Chisnell, R. F. 1998 An analytic description of converging shock waves. J. Fluid Mech. 354,
357–375.

Guderley, G. 1942 Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des
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